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Abstract Possible two-phase piecewise-homogeneous

deformations in elastoplastic materials with strain-soften-

ing behavior under plane shear are analyzed. Discontinu-

ities of stress and deformation gradient across interfaces

between phases are considered and continuity of traction

and displacement across interfaces and the Maxwell

relation is imposed. The governing equations are obtained.

The analysis is reduced to finding a minimum value of the

loading at which governing equations have a unique, real,

physically acceptable solution. It is found that for a plate

with constant thickness under plane shear two-phase

piecewise-homogeneous deformations are possible, and the

Maxwell stress, the stresses and strains in both phases, the

jumps of stress and deformation gradient across interfaces

and the inclination angle of the localized deformed band

can all be determined. As an illustration, a NiTi alloy plate

under plane shear is numerically analyzed. The inclination

angle of the martensite band is predicted to be 90�, and this

predicted value can be applied to explain why no locally

deformed spiral martensite band was observed in experi-

ments on thin-walled NiTi alloy tubes under torsion.

Introduction

Stress-induced phase transformations in strips and thin-

walled tubes under uniaxial loading (tension/compression)

were widely observed in experiments, see, e.g., Wattrisse

et al. [1], Corona et al. [2], Shaw and Kyriakides [3] and

Sun and Li [4], where inclined and locally deformed bands,

the Lüders bands or martensite bands (M-bands), were

observed, and stress–strain response curves with peak

stress, sudden dropping and the Maxwell stress plateau

were also measured.

In order to simulate the stress-induced phase transfor-

mations from austenite to martensite in NiTi alloy strips

under uniaxial tension observed in experiments, Shaw and

Kyriakides [5] modeled the NiTi alloy as elastoplastic

solids with strain-softening behavior, and the value of the

lower yield stress of NiTi alloy, which cannot be measured

in experiments, were approximately assumed. The strip

was discretized with three-dimensional, 20-nodes (qua-

dratic), brick elements, and a geometric imperfection

(small indentation) in a side of the strip was introduced

artificially to ensure that localized deformation could

initiate from there. The localized deformation in the NiTi

alloy strip was numerically simulated and was used to

simulate the initiation and propagation of phase transfor-

mation from austenite to martensite. Similar finite element

methods were also used by Kyriakides and Miller [6],

Corona et al. [2] and Sun et al. [7] to simulate the initiation

and propagation of the Lüders band in fine grained steel

strips under uniaxial tension/compression.

In the simulations above, however, discontinuities of

stress and deformation gradient across the quite sharp

interfaces between two phases was not considered; and,

more crucially, the Maxwell relation which is necessary for

phase transformations was not imposed.

Recently, based on the theory of phase transformations

Zhang et al. [8] suggested a method to determine theoret-

ically the value of the lower yield stress of materials with

strain-softening behavior. An analytical investigation of

stress-induced phase transformations in elastoplastic
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materials with strain-softening behavior under uniaxial

compression was also provided. It was shown that two-

phase piecewise-homogeneous deformations can coexist in

materials with strain-softening behavior under uniaxial

compression, and the predicted values of the Maxwell

stress, the inclination angle of the Lüders band and the kink

angle of the strip were in reasonable agreement with the

experimental measurements by Corona et al. [2].

In the present paper, an analytical study of stress-in-

duced phase transformations in elastoplastic materials with

strain-softening behavior under plane shear is carried out.

Unlike the experiments under uniaxial loading, experi-

ments on the stress-induced phase transformations under

shear are seldom reported in the literature. A paper about

experiments on NiTi alloy thin-walled tubes under tension

can be found, see Sun and Li [4]. It was observed that

under tension–torsion combined loading with an increasing

shear/tension stress ratio, there was a gradual change in the

deformation mode from localization and propagation of the

M-bands (under pure tension) to the homogeneous defor-

mation of the M-bands (under pure shear). In other words,

no localized deformed M-bands in thin-walled NiTi alloy

tubes under torsion were observed. The predicted result in

this paper will give a good explanation for the experimental

observation.

The rest of this paper is organized as follows. After the

possible two-phase piecewise-homogeneous deformation

of a plate under pure shear is described in the following

section, analysis of two-phase equilibrium under plane

shear is provided in Section ‘‘Analysis of two-phase

equilibrium under plane shear’’. In Section ‘‘Numerical

illustration’’, the stress–strain response curve of NiTi alloy

under uniaxial tension given by Shaw and Kyriakides [5]

is used to calibrate the three-dimensional elastoplastic

model proposed by Rice and Hill, and phase transforma-

tions in NiTi alloy plates under pure shear are analyzed. In

Section ‘‘Thin-walled NiTi alloy tube under torsion’’ the

predicted value of inclination angle of the martensite band

is used to explain why no locally deformed spiral M-bands

were observed in experiments on thin-walled NiTi alloy

tubes under torsion. In the final section we summarize our

main results.

Two-phase piecewise-homogeneous deformation of a

plate under pure shear in the X1 OX2 plane

A common Cartesian coordinate system for both the ref-

erence and deformed configurations is used in the present

paper. A typical material particle of plates whose position

vector in the reference configuration is denoted by (X1, X2,

X3) has a position vector (x1, x2, x3) in the deformed con-

figuration. The top view of a plate with constant thickness

under the shear in the X1 OX2 plane with possible two-

phase piecewise-homogeneous deformations is sketched in

Fig. 1, where the two phases are denoted by ‘–’ and ‘+’,

respectively. The ‘–’ phase is the phase of materials under

elastic deformation, and the ‘+’ phase is a possible local-

ized deformed band. The unit vector that is normal to the

interface between the two phases in the reference config-

uration and points from the ‘+’ phase into the ‘–’ phase is

denoted by N ¼ N1; N2; N3½ �T , and the inclination angle of

the possible ‘+’ band to the X2-axis is denoted by a.

We consider the following shear deformation in the X1

OX2 plane in the ‘–’ phase whose deformation gradient

tensor, denoted by F�, can be written as

F� ¼
1 x 0

0 k2 0

0 0 1

2
4

3
5; ð1Þ

where x is the amount of shear as shown in Fig. 1,

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

is the stretch in the X2-axis direction, and

the superscript/subscript ‘‘+’’ and ‘‘–’’ signify evaluation

inside the ‘‘+’’ phase or the ‘‘–’’ phase, respectively. When

there is no ‘‘+’’ or ‘‘–’’ superscript/subscript attached to a

field variable evaluated at interface, it means that the

variable can be evaluated on either side of the interface.

By Eq. 1 the corresponding Green strain tensor in the

‘–’ phase, denoted by E�, takes the following form

E� ¼
0 x=2 0

x=2 0 0

0 0 0

2
4

3
5: ð2Þ

The elastoplastic model of materials for finite defor-

mation proposed by Rice and Hill is adopted in the present

paper, see Rice [9, 10] and Hill and Rice [11, 12]. It gives

the response between the second Piola-Kirchhoff stress rate

tensor _T and the Green strain rate tensor _E as follows

N X2 ,  x2

α
X1 , x 1

arctan ω

Fig. 1 The top view of a plate under pure shear in the X1 OX2 plane
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_T ¼ Lep _E; ð3Þ

where Lep is the fourth-order elastoplastic stiffness tensor,

whose components for the isotropic, linearly hardening J2-

type model take the following form

Lep
ABCD ¼ LABCD �

E2

gð1þ mÞ2
T 0ABT 0CD; ð4Þ

where T 0AB are the components of the second Piola-

Kirchhoff deviatoric stress tensor T0, and

T0 ¼ T � 1
3
ðtrTÞd, E and m are the elastic modulus and

the Poisson ratio of materials, respectively, and the LABCD

are the components of the fourth-order elastic stiffness

tensor and are given by

LABCD ¼ 2GIABCD þ KdABdCD ð5Þ

with G being the elastic shear modulus, K the bulk

modulus, dij the Kronecker delta, and IABCD taking the

following form

IABCD ¼
1

2
ðdACdBD þ dBCdADÞ �

1

3
dABdCD: ð6Þ

The g in Eq. 4 takes the form

g ¼ 4

9
E½YðEpÞ�2 Ep

E
þ 3

2ð1þ mÞ

� �
; ð7Þ

with Ep being the plastic modulus defined by

EpðEpÞ ¼ dYðEpÞ
dEp

; ð8Þ

and Ep being the accumulated plastic deformation and

being defined by

Ep ¼
Z

_Epdt; ð9Þ

where t is a time-type variable, and _Ep is the accumulated

plastic deformation rate defined by

_Ep ¼ 2

3
tr _E
� �p _E

� �p
h i� �1=2

¼ 2

3
_E
� �p

AB
_E
� �p

AB

� �1=2

: ð10Þ

with _E
� �p

being the plastic Green strain rate tensor.

The yield criterion in the reference configuration is gi-

ven by

Teq ¼ YðEpÞ; ð11Þ

where Teq is the equivalent stress defined by

Teq ¼
3

2
trðT0T0Þ

� �1=2

¼ 3

2
T 0ABT 0AB

� �1=2

; ð12Þ

and the function Y(Ep) describes strain hardening of mate-

rials and can be measured by unidirectional tension tests.

It is well known that, for linearly elastic, linearly strain-

softening and linearly hardening materials, the plastic

modulus Ep is related to the elastic modulus E and the

tangent modulus Et through

1

Ep

¼ 1

Et

� 1

E
: ð13Þ

For the ‘–’ phase we have

T� ¼ LE� ¼
0 Gx 0

Gx 0 0

0 0 0

2
4

3
5: ð14Þ

A stress–strain response curve with peak stress, sudden

dropping and the Maxwell stress plateau was measured in

experiments on NiTi alloy strips under uniaxial tension,

see, e.g., the curve in the figure 8(b) of Shaw and

Kyriakides [5]. The peak stress was regarded as the super

yield stress of materials, denoted by TU
y . The lower yield

stress, denoted by TL
y , couldn’t be measured in experi-

ments, and Shaw and Kyriakides [5] suggested an

approximate value for it. Recently Zhang et al. [8] pro-

posed a method to determine the value theoretically. For

the pure shear defined by Eq. 1, the super yield stress

tensor and the lower yield stress tensor, denoted by TyU and

TyL, respectively, take the following forms

TyU ¼
0 TyU=

ffiffiffi
3
p

0

TyU=
ffiffiffi
3
p

0 0

0 0 0

2
64

3
75;

TyL ¼
0 TyL=

ffiffiffi
3
p

0

TyL=
ffiffiffi
3
p

0 0

0 0 0

2
64

3
75

ð15Þ

For linearly hardening materials, the stress inside the ‘+’

phase can be given by

Tþ ¼ TyL þ _T: ð16Þ

Analysis of two-phase equilibrium under plane shear

Governing equations

Multi-phase equilibrium requires that the following equi-

librium equations away from interfaces between phases

must be satisfied (in the absence of body forces)

9310 J Mater Sci (2007) 42:9308–9315
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DivpT ¼ 0; ð17Þ

where Div is the divergence operator in the reference

configuration, p is the first Piola-Kirchhoff stress tensor,

and the superscript T signifies the transpose of tensors.

The stress across interfaces between phases is generally

discontinuous, i.e. in general,

pþiA 6¼ p�iA: ð18Þ

For a continuum the continuity of traction across inter-

faces must be satisfied, namely

p½ �N ¼ 0; ð19Þ

where [g] = g+–g– is defined as a jump of the function g

across an interface that divided the body into two phases.

In order to satisfy the continuity of displacements across

interfaces the jump F½ � must necessarily take the form, see

Fu and Freidin [13],

F½ � ¼ f � N: ð20Þ

where f is a vector. From (20) f can be written as

f ¼ F½ �N: ð21Þ

For phase transformations the following Maxwell rela-

tion must be satisfied,

W½ � � f � pN ¼ 0; ð22Þ

where Wis the stress-work function that satisfies

oWðEÞ
oEAB

¼ TAB ð23Þ

with TAB and EAB being the components of the second

Piola-Kirchhoff stress tensor T and the Green strain tensor

E, respectively.

The Maxwell relation represents the continuity of the

Eshelby traction across interfaces, see Gurtin [14]. The

importance of the Maxwell relation was first noted by

Ericksen [15], Grinfeld [16] and Abeyaratne [17], but it

was Fredin and Chiskis [18, 19] who first used it as an

equilibrium condition in characterizing multi-phase defor-

mations. Recently, this approach has been used by Fu and

Zhang [20] in characterizing kink-band formation in fibre-

reinforced composites and by Zhang et al. [8] in the elas-

toplastic modeling of materials supporting multiphase

deformations.

For piecewise-homogenous deformations, the equilib-

rium equations are trivially satisfied. Two-phase equilib-

rium can occur only if the jump conditions (19) and (22) are

satisfied. Equations 19 and 22 are the governing equations

for two-phase piecewise-homogeneous deformations.

The stress inside the ‘–’ phase

From Eq. 14 and p ¼ FT, the first Piola-Kirchhoff stress

tensor inside the ‘–’ phase can be written as

p� ¼
T�12x T�12 0

T�12k2 0 0

0 0 0

2
4

3
5; ð24Þ

and the strain energy is given by

W� ¼ ðT�12Þ
2=2G: ð25Þ

The strain and stress inside the ‘+’ phase

For the pure shear deformation in the X1 OX2 plane we can

assume that the Nand the f take respectively the forms

N ¼ N1;N2; 0½ �T ; ð26Þ

f ¼ f1; f2; 0½ �T ; ð27Þ

So we have

F½ � ¼
f1N1 f1N2 0

f2N1 f2N2 0

0 0 0

2
4

3
5: ð28Þ

Consequently we have Fþ ¼ F� þ F½ �;Eþ ¼
1
2
ðFT
þFþ � IÞ, and

_E ¼ Eþ � EyL: ð29Þ

Substituting (29) into (3) gives _T, and then from (16) the

Tþ can be determined. So the jump of stress tensor across

interfaces is obtained through

p½ � ¼ FþTþ � p�: ð30Þ

The stress-work function for the ‘+’ phase is given by

Wþ ¼
R Eþ

AB

0 TþABðEþÞdEþAB. In particular, for trilinear stress-

strain response (linear elasticity, linearly strain-softening,

linearly hardening), we have

Wþ ¼ 1

2
TyU

AB EyU
AB þ

1

2
ðTyU

AB þ TyL
ABÞðE

yL
AB � EyU

ABÞ

þ TyL
AB

_EAB þ
1

2
_TAB

_EAB:

ð31Þ
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Jump conditions for two-phase piecewise-homogenous

deformations

Substituting (26) and (30) into (19), and (24–28) into the

Maxwell relation (22) give the following three equations

q1ðT�12; f1; f2;N1;N2Þ ¼ 0; ð32Þ

q2ðT�12; f1; f2;N1;N2Þ ¼ 0; ð33Þ

q3ðT�12; f1; f2;N1;N2Þ ¼ 0: ð34Þ

The analysis of stress-induced phase transformation is

reduced to finding the minimum value of T12
– that makes

Eqs. 32–34 together with N1
2 + N2

2 = 1 have a unique, real,

physically acceptable solution for [f1,f2,N1,N2]T. The phys-

ically acceptability means that for the plate under pure shear

shown in Fig. 1, where N2 > 0, the real solution must satisfy

f1 > 0 in order to ensure that [ F12 ] > 0, in other words, the

material inside the ‘+’ phase should be further sheared.

Equations 32–34 are strongly non-linear. In the fol-

lowing section, we consider their numerical solutions.

Numerical illustration

As a numerical illustration, a stress–strain response curve

under uniaxial tension measured in experiments on NiTi

alloy strips by Shaw and Kyriakides [5] is adopted in this

paper to calibrate the three-dimensional elastoplastic

model, see the curve of the nominal stress against the

Engineering strain in the figure 8 (b) by Shaw and

Kyriakides [5]. For the convenience of reading, the curve is

sketched in Fig. 2 in broad line, where S is the nominal

stress, and c = k –1 is the engineering strain with k being

the stretch in the tension direction.

The peak stress is usually chosen as the supper yield

stress, and from the curve by Shaw and Kyriakides [5] we

have the values of stress and strain at supper yield point:

SU
y ¼ 403 Mpa and cU

y ¼ 0:0065. It is difficult to measure the

lower yield stress Sy
L in experiments, and the values of the

stress and strain at lower yield point were given approxi-

mately in Shaw and Kyriakides [5]. In the present paper,

using the method suggested by Zhang et al. [8], the values

can be determined theoretically, and it is given that

SL
y ¼ 386 MPa and cL

y ¼ 0:046. The corresponding values of

the second Piola-Kirchhoff stress, the Green strain and the

elastic and hardening moduli of the material can be

easily evaluated from the above values: TU
y ¼ 400:397 MPa

and EU
y ¼ 0:00652112 at the upper yield point,

TL
y ¼ 368:321 MPa and EL

y ¼ 0:049152 at the lower yield

point, the elastic modulus E = 61400.1 MPa, and the

hardening modulus (tangent modulus) Et = 38624.8 MPa,

respectively. The Poisson ratio takes the value of 0.3 in the

present analysis.

After the calibration above, Eqs. 32–34 are still very

involved. With the aid of PHC (Polynomial Homotopy

Continuation) software package, numerically solving

Eqs. 34–36 together with N2
1 þ N2

2 ¼ 1 shows that:

1. If [f1, f2, N1, N2 ]Tis a real solution [–f1, –f2, –N1, –N2]T

is a real solution too. Namely, the number of the real

solutions is always a multiple of two. Since [–N1, –

N2]T signifies the unit vector that is normal to the other

interface in Fig. 1 and points from the ‘+’ phase into

the ‘–’ phase, only the solutions in which N2 > 0 and

f1 > 0 are concerned in the following analysis.

2. When T�12 ¼ 221:072731 there are four real solutions

for [f1, f2, N1, N2 ]T in which N2 > 0 and f1 > 0 as

follows

f1

f2

N1

N2

8>><
>>:

9>>=
>>;
¼

6.50267527636302E-02

�2.72684603738399E-03

1.05568143303551E-06

9.99999999999443E-01

8>><
>>:

9>>=
>>;
; ð35Þ

f1

f2

N1

N2

8>><
>>:

9>>=
>>;
¼

6.50432903280873E-02

�2.54458599200413E-03

�6.56671569459601E-03

9.99978438890052E-01

8>><
>>:

9>>=
>>;
; ð36Þ

f1

f2

N1

N2

8>><
>>:

9>>=
>>;
¼

6.50267549327202E-02

�1.99718554592573E+00

1.12011039838613E-09

1.00000000000000E+00

8>><
>>:

9>>=
>>;
; ð37Þ

f1

f2

N1

N2

8>><
>>:

9>>=
>>;
¼

6.56671569459013E-03

1.93557966369579E-03

�6.50642610496734E-02

�9.99978438890052E-01

8>><
>>:

9>>=
>>;
: ð38Þ

Subtituting the solution (35) into Eq. 28 gives F½ �.
Then we have consequently Fþ ¼ F� þ F½ � and

S

A    peak stress             D

SM      

P   lower yield stress   

the Maxwell stress plateau

O                               1γ λ= −

B C

Fig. 2 A typical strain–stress response curve of NiTi alloy under

uniaxial tension
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U2
þ ¼ ðFþÞ

TFþ (where U is the right strecth tensor).

With the aid of Mathematica or Maple, it is easy to find

that the eigenvalues (principal streches) of the Uþ are

(1.03653, 1., 0.962087), and the corresponding eigen-

vectors are [0.707107, 0.707106, 0.]T, [0., 0., 1.]T and

[–0.707106, 0.707107, 0.]T, respectively. As the three

principal stretches are all greater then zero the solution

(32) is physically acceptable.

Following the same procedure above, we find that, for

each of the solutions (36), (37) and (38), there is

always one of the eigenvalues of Uþ that is less than

zero, so that the solutions (36), (37) and (38) are not

phyysically acceptable.

3. When T�12 ¼ 221:072730 there is no real solution for

[f1, f2, N1, N2]T in which N2 > 0 and f1 > 0.

Finally, we obtain a unique, real, physically acceptable

solution (35) with

ðT�12Þmin ¼ 221:0727304ðMPaÞ: ð39Þ

More than 6 significant figures are used in the equations

above to show the calculating precision. In the following

equations only 6 significant figures are used. Furthermore,

values of order 10–6, or smaller, will be reported as zero

due to round off.

The deformation gradients inside the A- and M-phases

are given, respectively, by

F� ¼
1: 0:936138� 10�2 0

0:0239440 0:999956 0

0 0 1

2
64

3
75; ð40Þ

Fþ ¼
1: 0:0743881 0

0:0 0:997229 0

0 0 1

2
4

3
5: ð41Þ

The jump of the deformation gradient across the inter-

face is given by

F½ � ¼
0:0 0:0650268 0

0:0 �0:272685� 10�2 0

0 0 0

2
4

3
5: ð42Þ

The stress inside the A-phase, i.e. the Maxwell stress, is

given by

T� ¼
0 221.073 0

221.073 0 0

0 0 0

2
4

3
5ðMPaÞ; ð43Þ

and the stress inside the M phase takes the form

Tþ ¼
0:463237� 10�2 221:073 0

221:073 0:0 0

0 0 0:13901� 10�2

2
64

3
75

� ðMPaÞ:
ð44Þ

Since the upper and lower surfaces of the ‘+’ phase are

stress free there must be Tþ33 ¼ 0 inside the ‘+’ phase. But

from Eq. 44 we have Tþ33 ¼ 0:13901� 10�2 MPa al-

though the value of Tþ33 is very small as compared to the

value of Tþ12. In order to ensure that

Tþ33 ¼ 0; ð45Þ

inside the ‘+’ phase, Eq. 28 is replaced by

F½ � ¼
f1N1 f1N2 0

f2N1 f2N2 0

0 0 kþ3 � 1

2
4

3
5; ð46Þ

where kþ3 is the stretch in the thickness direction of the

plate in the ‘+’ phase. Following the similar procedure to

the one described in Section ‘‘Analysis of two-phase

equilibrium under plane shear’’, the three equations similar

to Eqs. 32–34 but with kþ3 included are obtained as follows

s1ðT�12; f1; f2;N1;N2; k
þ
3 Þ ¼ 0; ð47Þ

s2ðT�12; f1; f2;N1;N2; k
þ
3 Þ ¼ 0; ð48Þ

s3ðT�12; f1; f2;N1;N2; k
þ
3 Þ ¼ 0: ð49Þ

Solving Eqs. 45, 47–49 together with N2
1 þ N2

2 ¼ 1

gives a unique, real, physically acceptable solution

f1

f2

N1

N2

kþ3

8>>>><
>>>>:

9>>>>=
>>>>;
¼

6.50268E-02

�2.72684E-03

0.0

1.00000

1.00000

8>>>><
>>>>:

9>>>>=
>>>>;

ð50Þ

with ðT�12Þmin ¼ 221:073 Mpa.

Comparing the solution above with the solution (35)

shows that the values of the two solutions are very close,

but the solution (50) will give the more precise value of the

stress inside the ‘+’ phase.

The corresponding Maxwell stress T� is then given by

T� ¼
0 221:073 0

221:073 0 0

0 0 0

2
4

3
5ðMPaÞ; ð51Þ

and the stress inside the ‘+’ phases is in the form
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Tþ ¼
0:421593� 10�2 221:073 0

221:073 0 0

0 0 0:0

2
4

3
5ðMPaÞ: ð52Þ

The inclination angle of the ‘+’ phase band to the X2-

axis is given by a = 90�–tan–1(–N1 /N2). We have

a ¼ 90:0�;

i.e. a locally deformed ‘+’ phase band can coexist with the

‘–’ phase in plates under plane shear and the band is per-

pendicular to the X2-axis.

It is difficult to carry out experiments on plates under

plane shear. Experiments on thin-walled NiTi alloy tubes

under torsion were carried out by Sun and Li [4], where

no locally deformed M-bands were observed. The above

predicted value of a = 90.0� can be used to explain the

observation.

Thin-walled NiTi alloy tube under torsion

A thin-walled NiTi alloy tube under torsion with a possible

spiral M-band is plotted in Fig. 3. The X1(x1)-axis is par-

allel to the cross section of the tube, the X2(x2)-axis and the

X3(x3)-axis are along the axis of the tube and the thickness

direction of the tube, respectively. The unit vector that is

normal to the A–M interface in the reference configuration

and points from the M-phase into the A-phase is denoted

also by N ¼ N1;N2;N3½ �T as shown in Fig. 1.

For a thin-walled tube it can be assumed that the stress

along the thickness direction of the tube is homogeneous,

so every material particle of the tube is under pure shear in

the X1 OX2 plane as the particle in the plate is. It is worth

noting that the possible inclined ‘+’ phase band in the plate

shown in Fig. 1 becomes a spiral M-band (the shadowed

band in Fig.3) on the tube, and its spiral angle is equal to

90�–a as shown in Fig. 3.

Two distinct observations were found in the experiments

on NiTi alloy thin-walled tubes under tension and torsion,

respectively. A spiral M-band on the tube under axial

tension was observed. The M-band initiated at a peak

stress, and then, following a sudden drop of stress, spread

along the length direction of the tube under an approxi-

mately constant stress (the Maxwell stress plateau) until the

whole tube transformed into the M-phase. When NiTi tubes

were subjected to torsion, however, no locally deformed

spiral M-band on tubes was observed, and the austenite

phase was transformed into the M-phase homogeneously

throughout whole tubes when the applied toque reached a

critical value. I addition no Maxwell plateau was observed.

From Fig. 3, the height and the maximal height of the

possible spiral M-band, denoted by h and hmax, are given

respectively by h = b tan|90�–a| and hmax = p D tan|90�–a
|, where b is the arc length of the section of the periphery of

the end-face of the tube where the spiral M-band initiates

from, and D is the outer diameter of the tube. For the tube

under tension along its axial direction, with the aid of the

method suggested in Zhang et al. [8], the inclination angle

of the M-band to the axis of the tube can be predicted, and

the predicted value of 61.05� for a is very close to the

measured value of 61� by Sun and Li [4]. For this incli-

nation angle value of 61� the maximal height of the spiral

M-band is given by hmax = p Dtan29�� 1.741D, so that

under tension the spiral M-band can spreads from h = 0 to

h = 1.741D, and when h = 1.741D the whole tube trans-

formed into the M-phase.

For the tube under torsion, the predicted value of the

inclination angle of the M-band is 90�, and the maximal

height of the possible M-band is given by hmax = 0, so that

the spreading of the M-band cannot occur, and the local-

ized deformed M-band and the Maxwell plateau cannot be

observed in experiments..

Conclusions

The stress-induced phase transformation in elastoplastic

materials with strain-softening behavior under plane shear

is investigated. Discontinuities of stress and deformation

gradient across interfaces between phases are considered,

and continuity of traction and displacement across inter-

faces and the Maxwell relation are imposed. The governingFig. 3 A thin-walled tube under torsion
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equations are obtained. The analysis is reduced to finding

the minimum value of the loading at which governing

equations have a unique, real, physically acceptable solu-

tion. The following conclusions can be drawn out.

• Stress-induced phase transformations can occur in

elastoplastic materials with strain-softening behavior

under plane shear. A unique physically acceptable

solution can be obtained. The Maxwell stress, the

jumps of stress and deformation gradient across the

interface and the inclination angle of the locally

deformed band can all be determined.

• For the plate under plane shear two-phase piecewise-

homogeneous deformations can coexist, and the incli-

nation angle of the locally deformed band to the X2-

axis is 90�.

• The predicted value of inclination angle of M-band, 90�,

can be applied to explain why no spiral M-band and the

Maxwell stress plateau were observed in experiments on

thin-walled NiTi alloy tubes under torsion.
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